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List of symbols

• NEGF - nonequilibrium Green’s function

• DFT - density functional theory

• TDDFT - time-dependent DFT

• M - molecule

• B (L, R, rad) - bath (left contact, right contact, radiation field)

• S - molecular many-body state

• ET - electron transfer transition (electron transition between molecule and contacts)

• OT - optical transfer transition (intra-molecular electron transfer)
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First principles simulations

Density functional theory (DFT) and time-dependent DFT (TDDFT) of electronic structure

of isolated nitroazobenzene molecule were performed with the Gaussian 16 program package.1

Wavefunctions were expanded with the triple-zeta valence basis set with polarization and

diffuse functions (6-311++G(2d,2p)) on all atoms and the hybrid B3LYP functional was

used for all calculations of electronic structure reported in the letter.

A geometry for the ground electronic state of the neutral molecule was optimized, and

vibrational frequencies for the optimized geometry were analyzed to confirm that all positive

frequencies were obtained.

The vertical electron attachment/detachment energies were estimated from the difference

between total energies for different charge states of the molecule. In particular, the electron

attachment energy was estimated as difference between energies of neutral molecule and

cation in their ground states. Its value, 8.75 eV, is close to the one obtained by ultraviolet

photoelectron spectroscopy (UPS) experiment.2 The electron detachment energy was given

by energy difference between neutral molecule and anion in their ground states, its value was

1.94 eV. Table S1 gives energies of neutral, cation and anion ground states of the molecule.

Table S1: Energies of ground states (eV)

ENg EAg ECg

-21156.7710 -21158.7146 -21148.0182

The vertical excitation energies and transition dipole moments were investigated with

the aid of TDDFT calculations at the B3LYP/6-311++(2d,2p) level. Among electronic

excitations, we consider only excitation of 3.42 eV. This excitation demonstrates the largest

oscillator strength f = 0.836. Figure S1 sketches electronic and optical transitions considered

in the simulations. Table S2 shows several lowest excitation transitions and their oscillator

strengths.
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Figure S1: Sketch of electron (red line) and optical (yellow line) transitions considered in
the simulations.

Table S2: Optical transitions in neutral molecule

# Excitation energy (eV) Oscillator strength
1 2.3933 0.0000
2 3.4214 0.8356
3 3.6539 0.0000
4 3.6966 0.0436
5 3.8765 0.0001
6 3.9243 0.0221
7 4.1810 0.0002
8 4.3327 0.0778
9 4.6369 0.0184
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Choice of parameters

Parameters for coupling of molecule to contacts and for electron transfer between molecule

units are fitting parameters. They are chosen in a physically reasonable range to reproduce

experimental data.

Regarding choice of escape rates, we note that, the TDDFT calculations of NAB indicate

that orbitals responsible for optical transitions are HOMO-1 and LUMO (HOMO-LUMO

transition has zero oscillator strength). Similarly, DFT simulations show significant charge

distribution of HOMO-1 and relative localization of the population in the center of molecule

for HOMO. Thus, both intra-molecular optical transition and electron transfer transition

between molecule and contacts will be dominated by the HOMO-1 and LUMO orbitals.

Comparing HOMO-1 and LUMO (see Fig. S2) of NAB molecule, one sees that the former has

a bit asymmetric spatial distribution. Thus, we set asymmetric couplings for corresponding

electronic transitions: ΓLET iET j
= 0.9 eV and ΓRET i,ET j

= 0.3 eV for ET i,j ∈ {Ag → Nx, Ng →

Cg} and ΓLET i,ET j
= 0.6 eV and ΓRET i,ET j

= 0.6 eV for ET i,j ∈ {Ag → Ng, Nx → Cg}. We

take workfunction of the substrate to be 5.25 eV.

Figure S2: HOMO-1 (left) and LUMO (right) orbitals of neutral NAB molecule.

Regarding parameter of electron transfer between molecular units, we performed several

calculations with two conjugated units and found that for dihedral angle of 129 degrees

population localizes on subunits, which yields expected weakly coupled multi-unit behavior.

However, pursuing ab initio simulations for chains is not feasible due to prohibitively large

number of many-body states one needs to describe experimentally observed physics. Thus,

S5



instead we focused on first principles simulations of the units of the chain and took an order

of magnitude interaction from the corresponding Fock matrix as a parameter in our model.

All parameters utilized in the simulations are collected in Table S3.

Table S3: Parameters used in the simulations
ET i,j ∈ {Ag → Nx, Ng → Cg}
ET k,l ∈ {Ag → Ng, Nx → Cg}

parameter value
∆NgCg −3.50 eV
∆NxCg −0.08 eV
∆AgNg 3.31 eV
∆AgNx −0.11 eV
∆OT 3.42 eV

ΓLET i,ET j
0.90 eV

ΓRET i,ET j
0.30 eV

ΓLETk,ET l
0.60 eV

ΓRETk,ET l
0.60 eV

tETn,ETn+1 0.01 eV
γSn
P 0.02 eV

γOTn 14 meV
(at λ = 380 nm)
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Hubbard NEGF method

Details of the diagrammatic technique for Hubbard NEGF can be found in ref 3. Here we

give short summary of the procedure utilized for simulation of the Hubbard Green’s function

(eq 11 in the main text). For the problem at hand main contribution to the signal comes

from single electron transfer events. Thus, for simplicity we restrict our consideration to first

Hubbard approximation in which only diagrams containing bath self-energies multiplied by

many-body spectral weights are taken into account as the Hubbard NEGF self-energies.

Note this level of description is not capable to account for two-electron tunneling and co-

tunneling; it also misses important features of noise signal. However, in calculation of fluxes

dominated by single-particle transport it is sufficient.

Within the first Hubbard approximation one has to solve Dyson equation for locator

(
i∂τ1 −∆M1

)
gM1M2(τ1, τ2)−

∑
M

∫
c

dτ ΣM1M(τ1, τ)gMM2(τ, τ2) = δM1,M2δ(τ1, τ2) (S1)

from which Hubbard Green’s function is obtained by multiplication with spectral weight

PM1M2

GM1M2(τ1, τ2) =
∑
M

gM1M(τ1, τ2)PMM2(τ2) (S2)

Here

PM1M2(τ) ≡
〈{

X̂M1(τ); X̂†M2
(τ)

}〉
(S3)

and ΣM1M2(τ1, τ2) is Hubbard self-energy, which consists from contributions of self-energies

due to coupling to contacts (K = L,R) and radiation field (rad). For chain model used in

study of dependence of current o thickness of molecular layer there are also contributions

from neighboring molecules in the chain (N) and from Buttiker probes (P )

ΣM1M2(τ1, τ2) =
∑

B=L,R,rad,N,P

ΣB
M1M2

(τ1, τ2) (S4)
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Following diagrammatic rules formulated in ref 3 one gets explicit expressions for the self-

energies in the form

ΣK
M1M2

(τ1, τ2) =
∑
M

PM1M σKMM2
(τ1, τ2) (S5)

Σrad
M1M2

(τ1, τ2) = iπ(τ1, τ2)N~α(M1)−~α(O) gM(−)
3 M(−)

4
(τ1, τ2) N~α(M2)−~α(O) (S6)

+ iπ(τ2, τ1)N~α(M1)+~α(O) gM(+)
3 M(+)

4
(τ1, τ2) N~α(M2)+~α(O)

ΣN
M1M2

(τ1, τ2) =
∑
M

∑
M3,M4

PM1,M tMM3 GM3M4 (τ1, τ2) tM4M2 (S7)

ΣP
M1M2

(τ1, τ2) = δM1,M2 γP gM1M2(τ1, τ2) (S8)

Here σKM1M2
(τ1, τ2) is defined in eq 10 of the main text,

π(τ1, τ2) =
∑
α

UOα fα(τ1, τ2)UαO, (S9)

fα(τ1, τ2) = −i〈Tc âα(τ1) â
†
α(τ2)〉 is Green’s function of free photon in mode α,

N~α(M)−~α(O)X̂M(−) ≡
[
X̂M; X̂†O

]
(S10)

N~α(M)+~α(O)X̂M(+) ≡
[
X̂M; X̂O

]
, (S11)

where N~α is equal to ±1 when the root vector4 ~α exists, and 0 otherwise. M(+) andM(−)

are defined so as ~α(M(+)) = ~α(M)− ~α(O) and ~α(M(−)) = ~α(M) + ~α(O), respectively.
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